domingo, 29 de abril de 2012

MOTORES

MOTOR AC
 Se denomina motor de corriente alterna a aquellos motores electricos que funcionan con corriente alterna. Un motor es una máquina motriz, esto es, un aparato que convierte una forma determinada de energía en energía mecánica de rotación o par. Un motor eléctrico convierte la energía eléctrica en fuerzas de giro por medio de la acción mutua de los campos magnéticos.










SE CLASIFICAN POR SU VELOCIDAD DE GIRO, POR EL TIPO DE ROTOR Y POR EL NUMERO DE FASES DE ALIMENTACION.

POR SU VELOCIDAD DE GIRO:
 
MOTORES SÍNCRONOS
Los motores síncronos son un tipo de motor de corriente alterna. Su velocidad de giro es constante y depende de la frecuencia de la tensión de la red eléctrica a la que esté conectada y por el número de pares de polos del motor, siendo conocida esa velocidad como "velocidad de sincronismo".











  
MOTORES CON UN ROTOR DE IMÁN PERMANENTE

Los motores de imanes permanentes son motores eléctricos cuyo funcionamiento se basa en imanes permanentes (motores de IP). Existen diversos tipos, siendo los más conocidos:
  • Motores de corriente continua de IP
  • Motores de corriente alterna de IP
  • Motores paso a paso de IP








 ASINCRONOS

Los motores asíncronos o de inducción son un tipo de motor de corriente alterna. El primer prototipo de motor eléctrico capaz de funcionar con corriente alterna fue desarrollado y construido por el ingeniero Nikola Tesla y presentado en el American Institute of Electrical Engineers (en español, Instituto Americano de Ingenieros Eléctricos, actualmente IEEE) en 1888.
El motor asíncrono trifásico está formado por un rotor, que puede ser de dos tipos: a) de jaula de ardilla; b) bobinado, y un estátor, en el que se encuentran las bobinas inductoras. Estas bobinas son trifásicas y están desfasadas entre sí 120º en el espacio. Según el Teorema de Ferraris, cuando por estas bobinas circula un sistema de corrientes trifásicas equilibradas, cuyo desfase en el tiempo es también de 120º, se induce un campo magnético giratorio que envuelve al rotor. Este campo magnético variable va a inducir una tensión en el rotor según la Ley de inducción de Faraday: La diferencia entre el motor a inducción y el motor universal es que en el motor a inducción el rotor no es un imán permanente sino que es un electroimán. Tiene barras de conducción en todo su largo, incrustadas en ranuras a distancias uniformes alrededor de la perifería. Las barras están conectadas con anillos(en cortocircuito como dicen los electricistas) a cada extremidad del rotor. Estan soldadas a las extremidades de las barras. Este ensamblado se parece a las pequeñas jaulas rotativas para ejercer a mascotas como hamsters y por eso a veces se llama "jaula de ardillas", y los motores de inducción se llaman motores de jaula de ardilla.








 POR EL TIPO DE ROTOR

 MOTORES CON COLECTOR
En ingeniería eléctrica, un colector es un método de hacer una conexión eléctrica a través de un ensamblaje rotativo. Los colectores también son llamados anillos rotatorios, anillos deslizantes (del inglés slip ring), interfaces eléctricas rotativas, conectores eléctricos rotativos o junta eléctrica rotativa, son comúnmente hallados en maquinas eléctricas de corriente alterna como generadores, alternadores, turbinas de viento, en las cuales conecta las corriente de campo o excitación con el bobinado del rotor. En el caso especial de las maquinas eléctricas de corriente continua (motores y generadores) se usa un conmutador. Como regla general, se tienen tantos colectores como bobinas se tengan en el campo, por consiguiente, como fases tenga el sistema

 









MOTORES DE JAULA DE ARDILLA

Un rotor de jaula de ardilla es la parte que rota usada comúnmente en un motor de inducción de corriente alterna. Un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula. El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas).
La base del rotor se construye con láminas de hierro apiladas. El dibujo muestra solamente tres capas de apilado pero se pueden utilizar muchas más.
Los devanados inductores en el estator de un motor de inducción instan al campo magnético a rotar alrededor del rotor. El movimiento relativo entre este campo y la rotación del rotor induce corriente eléctrica, un flujo en las barras conductoras. Alternadamente estas corrientes que fluyen longitudinalmente en los conductores reaccionan con el campo magnético del motor produciendo una fuerza que actúa tangente al rotor, dando por resultado un esfuerzo de torsión para dar vuelta al eje. En efecto, el rotor se lleva alrededor el campo magnético, pero en un índice levemente más lento de la rotación. La diferencia en velocidad se llama "deslizamiento" y aumenta con la carga.

 POR SU NUMERO DE FASES DE ALIMENTACION


MOTORES MONOFÁSICOS
Este tipo de motor es muy utilizado en electrodomésticos porque pueden funcionar con redes monofásicas algo que ocurre con nuestras viviendas.
En los motores monofásicos no resulta sencillo iniciar el campo giratorio
 

 









MOTORES BIFÁSICOS.











MOTORES TRIFÁSICOS

Son los motores más utilizados, pues los motores monofásicos tienen limitación de
potencia, y además de esto suministran rendimientos y pares menores, lo que aumenta
su costo operacional.
Las tensiones trifásicas más utilizadas son 220 V, 380 V y 440 V.

 







 
MOTOR DC

El motor de corriente continua es una máquina que convierte la energía eléctrica continua en mecánica, provocando un movimiento rotatorio. En la actualidad existen nuevas aplicaciones con motores eléctricos que no producen movimiento rotatorio, sino que con algunas modificaciones, ejercen tracción sobre un riel. Estos motores se conocen como motores lineales.
Esta máquina de [corriente continua) es una de las más versátiles en la industria. Su fácil control de posición, paro y velocidad la han convertido en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica su uso ha disminuido en gran medida, pues los motores de corriente alterna, del tipo asíncrono, pueden ser controlados de igual forma a precios más accesibles para el consumidor medio de la industria. A pesar de esto los motores de corriente continua se siguen utilizando en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micro motor, etc.)
La principal característica del motor de corriente continua es la posibilidad de regular la velocidad desde vacío a plena carga.
Su principal inconveniente, el mantenimiento, muy caro y laborioso.
Una máquina de corriente continua (generador o motor) se compone principalmente de dos partes, un estator que da soporte mecánico al aparato y tiene un hueco en el centro generalmente de forma cilíndrica. En el estator además se encuentran los polos, que pueden ser de imanes permanentes o devanados con hilo de cobre sobre núcleo de hierro. El rotor es generalmente de forma cilíndrica, también devanado y con núcleo, al que llega la corriente mediante dos escobillas.
También se construyen motores de CC con el rotor de imanes permanentes para aplicaciones especiales.











ESTOS MOTORES SE CLASIFICAN SEGUN LA FUNCION DE LOS BOBINADOS DEL INDUCTOR E INDUCIDO.
 
MOTORES SERIE


El motor serie o motor de excitación en serie, es un tipo de motor eléctrico de corriente continua en el cual el inducido y el devanado inductor o de excitación van conectados en serie. Por lo tanto, la corriente de excitación o del inductor es también la corriente del inducido absorbida por el motor.
Las principales características de este motor son:
- Se embala cuando funciona en vacío, debido a que la velocidad de un motor de corriente continua aumenta al disminuir el flujo inductor y, en el motor serie, este disminuye al aumentar la velocidad, puesto que la intensidad en el inductor es la misma que en el inducido.
- La potencia es casi constante a cualquier velocidad.
- Le afectan poco la variaciones bruscas de la tensión de alimentación, ya que un aumento de esta provoca un aumento de la intensidad y, por lo tanto, del flujo y de la fuerza contra electromotriz, estabilizándose la intensidad absorbida.









MOTORES SHUNT

El motor shunt o motor de excitación en paralelo es un motor eléctrico de corriente continua cuyo bobinado inductor principal está conectado en derivación o paralelo con el circuito formado por los bobinados inducido e inductor auxiliar.
Al igual que en los dinamos shunt, las bobinas principales están constituidas por muchas espiras y con hilo de poca sección, por lo que la resistencia del bobinado inductor principal es muy grande.
En el instante del arranque, el par motor que se desarrolla es menor que el motor serie, (también uno de los componentes del motor de corriente continua). Al disminuir la intensidad absorbida, el régimen de giro apenas sufre variación.
Es el tipo de motor de corriente continua cuya velocidad no disminuye mas que ligeramente cuando el par aumenta. Los motores de corriente continua en derivación son adecuados para aplicaciones en donde se necesita velocidad constante a cualquier ajuste del control o en los casos en que es necesario un rango apreciable de velocidades (por medio del control del campo). El motor en derivación se utiliza en aplicaciones de velocidad constante, como en los accionamientos para los generadores de corriente continua en los grupos motogeneradores de corriente continua

 






 
MOTOR DE EXCITACIÓN COMPUESTA

Un motor compound (o motor de excitación compuesta) es un Motor eléctrico de corriente continua cuya excitación es originada por dos bobinados inductores independientes; uno dispuesto en serie con el bobinado inducido y otro conectado en derivación con el circuito formado por los bobinados: inducido, inductor serie e inductor auxiliar.
Los motores compuestos tienen un campo serie sobre el tope del bobinado del campo shunt. Este campo serie, el cual consiste de pocas vueltas de un alambre grueso, es conectado en serie con la armadura y lleva la corriente de armadura.
El flujo del campo serie varia directamente a medida que la corriente de armadura varía, y es directamente proporcional a la carga. El campo serie se conecta de manera tal que su flujo se añade al flujo del campo principal shunt. Los motores compound se conectan normalmente de esta manera y se denominan como compound acumulativo.
Esto provee una característica de velocidad que no es tan “dura” o plana como la del motor shunt, ni tan “suave” como la de un motor serie. Un motor compound tiene un limitado rango de debilitamiento de campo; la debilitación del campo puede resultar en exceder la máxima velocidad segura del motor sin carga. Los motores de corriente continua compound son algunas veces utilizados donde se requiera una respuesta estable de par constante para un rango de velocidades amplio.
El motor compound es un motor de excitación o campo independiente con propiedades de motor serie. El motor da un par constante por medio del campo independiente al que se suma el campo serie con un valor de carga igual que el del inducido. Cuantos más amperios pasan por el inducido mas campo serie se origina, claro está, siempre sin pasar del consumo nominal.










MOTOR UNIVERSAL
Los motores universales son motores en serie de potencia fraccional, de corriente alterna, diseñados especialmente para usarse en potencia ya sea de corriente continua o de corriente alterna. Recordemos que el motor serie de corriente continua se caracteriza por disponer de un fuerte par de arranque y que la velocidad del rotor varía en sentido inverso de la carga, pudiendo llegar a embalarse cuando funciona en vacío. Estos motores tienen la misma característica de velocidad y par cuando funcionan en c.a. o en c.c. En general, los motores universales pequeños no requieren devanados compensadores debido a que el número de espiras de su armadura es reducido y por lo tanto, también lo será su reactancia de armadura. Como resultado, los motores inferiores a 3/8 de caballo de fuerza generalmente se construyen sin compensación. El costo de los motores universales no compensados es relativamente bajo por lo que su aplicación es muy común en aparatos domésticos ligeros, por ejemplo: aspiradoras, taladros de mano, licuadoras, etc. El motor universal es sin duda, el más utilizado en la industria del electrodoméstico. Su nombre deriva del hecho de que puede funcionar tanto en corriente alterna como en corriente continua. Para que un motor de este tipo pueda funcionar con c.a. es necesario que el empilado de su inductor (el núcleo de los electroimanes) sea de chapa magnética para evitar las corrientes de Foucault. Por otra parte, la conmutación resulta en los motores universales que en los de corriente continua, por lo que la vida de las escobillas y el colector es más corta, inconveniente que reduce mucho el campo de aplicación de los motores universales.
Los motores universales grandes tienen algún tipo de compensación. Normalmente se trata del devanado compensador del motor serie o un devanado de campo distribuido especialmente para contrarrestar los problemas de la reacción de armadura.
Su esquema de conexiones y sus características de funcionamiento corresponden a las de un motor serie.
El estator de los motores universales que se utilizan en electrodomésticos (y también para otros servicios) suele ser bipolar, con dos bobinas inductoras.
La parte más delicada y de construcción más laboriosa de estos motores es el rotor o inducido. Núcleo, bobinados, colector y eje requieren una construcción muy cuidada. En general, los motores universales para electrodomésticos están calculados para girar a altas velocidades; y como los entrehierros son pequeños, cualquier descentramiento o desequilibrio existente en el conjunto rotor produce vibraciones que pueden perturbar el funcionamiento y dañar seriamente el motor. Estos motores se someten a una operación de equilibrado que se efectúa con complicados instrumentos electrónicos.
El eje, que gira a gran velocidad, debe sustentarse en rodamientos de bolas o sobre casquillos de bronce poroso autolubricantes.
La velocidad de estos motores depende de la carga: a más carga, menos velocidad y viceversa. Esta propiedad y el poseer un elevado par de arranque son lo más característico de los motores universales.



1 comentario: